

Reg. No.:	
-----------	--

Name:.....

IV Semester B.Sc. Degree CBCSS (OBE) Regular/Supplementary/ Improvement Examination, April 2022 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 4C04MAT-PH: Mathematics for Physics – IV

Time: 3 Hours Max. Marks: 40

PART - A

Answer any four questions from this Part. Each question carries 1 mark.

- 1. Find the order of the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$.
- 2. Find the gradient of $f(x,y,z) = \sqrt{\ln(x^2 + y^2 + z^2)}$
- 3. Write a parametrization of the sphere $x^2 + y^2 + z^2 = a^2$.
- 4. Find the divergence of the vector field $F(x,y) = \frac{-y}{x^2 + y^2}\hat{i} + \frac{x}{x^2 + y^2}\hat{j}$.
- 5. Define Trapezoidal rule.

 $(4 \times 1 = 4)$

PART - B

Answer any seven questions from this Part. Each question carries 2 marks.

- 6. Show that $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ is a parabolic partial differential equation.
- 7. Solve the partial differential equation $u_{yy} = 0$.
- 8. Find the line integral of f(x, y) = x y + 3 along the curve $r(t) = \cos t \hat{i} + \sin t \hat{j}$, $0 \le t \le 2\pi$.

K22U 1562

- 9. What is the circulation density of $F = \tan^{-1}\left(\frac{y}{x}\right)\hat{i} + \ln(x^2 + y^2)\hat{j}$?
- 10. Show that $\sin y \cos x dx + \cos y \sin x dy + dz$ is exact.
- 11. Integrate $G(x, y, z) = x^2$ over the unit sphere $x^2 + y^2 + z^2 = 1$.
- 12. Find the curl of $F = (x y)\hat{i} + (y z)\hat{j} + (z x)\hat{k}$.
- 13. Prove that $\nabla \times \nabla f = 0$.
- 14. Use Trapezoidal rule with n = 4 to approximate $\int_{0}^{2} x^{3} dx$.
- 15. Find an upper bound for the error in estimating $\int_{0}^{2} 5x^{4} dx$ using Simpson's $\frac{1}{3}$ rule with n = 4.
- 16. Find the Taylor series for y(x) if $\frac{dy}{dx} = 1 + xy$ and y(0) = 1. (7×2=14)

Answer any four questions from this Part. Each question carries 3 marks.

- 17. Transform the partial differential equation $u_{xx} + 2u_{xy} + u_{yy} = 0$ into a normal form.
- 18. If u_1 and u_2 are solutions of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in some region R, then prove that $u = c_1 u_1 + c_2 u_2$ where c_1 and c_2 are constants is also a solution of the above partial differential equation.
- 19. Find the circulation of the field $F = (x y)\hat{i} + x\hat{j}$ around the circle $r(t) = \cos t \hat{i} + \sin t \hat{j}$, $0 \le t \le 2\pi$.
- 20. Show that $F = (e^x \cos y + yz)\hat{i} + (xz e^x \sin y)\hat{j} + (xy + z)\hat{k}$ is conservative over its natural domain and find a potential function for it.

- 21. Find the area of the surface cut from the paraboloid $x^2 + y^2 z = 0$ by the plane z = 2.
- 22. Use Euler method to find the value of Estimate the value of y when x = 0.1 if $y' = x^2 + y$ and y(0) = 1.
- 23. If $\frac{dy}{dx} = y x$ and y(0) = 2, find y(0.1) correct to four decimal places. (4×3=12)

PART – D

Answer any two questions from this Part. Each question carries 5 marks.

- 24. Find the solution of the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \text{ with boundary condition}$ $u(0, t) = u(L, t) = 0, \ t \ge 0 \text{ and initial condition } u(x, 0) = f(x), \ u_t(x, 0) = 0,$ $0 \le x \le L \text{ where } f(x) = \frac{\frac{2kx}{L}}{\frac{2K(L-x)}{L}} \quad \text{if} \quad 0 \le x < \frac{L}{2}.$
 - 25. Find the counter clockwise circulations and outward flux of the field $F = xy\hat{i} + y^2\hat{j}$ around and over the boundary of the region enclosed by the curves $y = x^2$ and y = x in the first quadrant.
 - 26. Calculate the circulation of the field $F = 2y\hat{i} + 3x\hat{j} z^2\hat{k}$ around the circle $x^2 + y^2 = 9$ in the XY plane counter clockwise when viewed from above.
 - 27. If $y = A + Bx + Cx^2$ and y_0 , y_1 , y_2 are the values y corresponding to x = 0, h and 2h respectively, prove that $\int_0^{2h} y dx = \frac{h}{3}(y_0 + 4y_1 + y_2).$ (2x5=10)